Published on Web 02/18/2009

Perfluoroaryltetrahedranes: Tetrahedranes with Extended $\boldsymbol{\sigma}-\boldsymbol{\pi}$ Conjugation

Masaaki Nakamoto, Yusuke Inagaki, Motoaki Nishina, and Akira Sekiguchi*
Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

Received December 25, 2008; E-mail: sekiguch@chem.tsukuba.ac.ip

Tetrahedrane (tricyclo[1.1.0.0. ${ }^{2,4}$]butane) is one of the most strained organic molecules, containing four cyclopropane rings in a fused system. ${ }^{1}$ The parent tetrahedrane is thermodynamically unstable and is still an unknown compound, even under matrixisolation conditions; however, its derivatives with four bulky, σ-donating substituents have been isolated (Chart 1). In 1978, Maier and co-workers succeeded in synthesizing tetrakis(tert-butyl)tetrahedrane (1), ${ }^{2}$ in which the four bulky ${ }^{t} \mathrm{Bu}$ substituents kinetically stabilize the tetrahedrane skeleton against ring-opening bond cleavage. However, when one of the ${ }^{t} \mathrm{Bu}$ substituents in $\mathbf{1}$ was replaced by a smaller group, such as a phenyl or methyl group, tetrahedrane derivatives were not detected, even at low temperature. ${ }^{1}$ However, the highly strained tetrahedrane skeleton can be sterically and electronically stabilized if the ${ }^{t} \mathrm{Bu}$ groups are replaced by σ-donating groups, such as trimethylsilyl groups. Thus, Maier and we succeeded in synthesizing tetrakis(trimethylsilyl)tetrahedrane (2), ${ }^{3,4 \mathrm{a}}$ which is stable up to $300{ }^{\circ} \mathrm{C}$, by the photochemical isomerization of tetrakis(trimethylsilyl)cyclobutadiene. ${ }^{4,5}$ Furthermore, we demonstrated that compound 2 could be transformed into tris(trimethylsilyl)tetrahedranyllithium 3, ${ }^{6}$ which reacts with a variety of electrophiles to give isolable substituted tetrahedranes with H and Me as substituents. ${ }^{6}$ Recently, we also reported the synthesis of hexakis(trimethylsilyl)tetrahedranyltetrahedrane, ${ }^{7}$ which has a very short linking $\mathrm{C}-\mathrm{C}$ bond $[1.436(3) \AA$] resulting from the high s-character of the central bond, by the oxidative coupling of $\mathbf{3}$ using CuCN .

Chart 1

1

2

3

Because tetrahedrane has an extremely strained skeleton, the ring strain raises the energy levels of the $\mathrm{C}-\mathrm{C} \sigma$-bond orbitals. ${ }^{1,8}$ Therefore, $\sigma-\pi$ conjugation between the tetrahedrane σ framework and the adjacent π-orbital system would be expected. However, all attempts to prepare aryl-substituted tetrahedranes have been unsuccessful, and no report of a stable tetrahedrane with a π system, such as a phenyl group, has appeared. Herein, we report a simple and straightforward method for the synthesis of three perfluoroarylsubstituted tetrahedranes, 4-6, which are the first stable arylsubstituted tetrahedrane derivatives; $\mathbf{4 - 6}$ have been characterized by NMR spectroscopy and $\mathbf{4}$ and $\mathbf{6}$ by X-ray diffraction. We also report the unusual electronic properties of these tetrahedranes, which are caused by $\sigma-\pi$ conjugation between the strained tetrahedrane core and the aromatic ring.

A 10 -fold excess of hexafluorobenzene was added at room temperature to a solution of $\mathbf{3}$ in THF. The reaction occurred immediately, and the reaction mixture turned from the dark-brown solution of $\mathbf{3}$ to
black. The reaction mixture was separated by HPLC to give the two products $\mathbf{4}$ and $\mathbf{5}$ as colorless crystals in 36 and 25% isolated yields, respectively (Scheme 1). ${ }^{9}$ The second substitution to produce 5 occurred regioselectively at the para position, as expected in view of the fact that the nucleophilic aromatic substitution reactions of many nucleophiles with hexafluorobenzene proceed regioselectively at the 1 and 4 positions. ${ }^{10}$ Because the second substitution is faster than the first, it was difficult to obtain $\mathbf{4}$ selectively, even when a large excess of hexafluorobenzene was used. Both of the compounds $\mathbf{4}$ and $\mathbf{5}$ are stable in air and at temperatures of up to $170^{\circ} \mathrm{C}$.

Scheme 1

The tetrahedrane unit could also be introduced into an extended π-conjugation system of the phenylene-ethynylene type by the same method as for the reaction of $\mathbf{3}$ with hexafluorobenzene. Thus, tetrahedranyllithium 3 was treated with [(pentafluorophenyl)ethynyl]benzene in THF to give the product $\mathbf{6}$ in 31% isolated yield; $\mathbf{6}$ is stable in air and has a melting point of $73.5-75.5^{\circ} \mathrm{C}$ (Scheme 2). ${ }^{9}$ As expected, the substitution reaction took place at the position para to the ethynyl group.

Scheme 2

The ${ }^{13} \mathrm{C}$ NMR signals of the tetrahedrane skeleton were observed at $-6.5 \mathrm{ppm}\left(C-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ and $-17.2 \mathrm{ppm}\left(C-\mathrm{SiMe}_{3}\right)$ for $\mathbf{4} ;-6.0$ $\mathrm{ppm}\left(C-\mathrm{C}_{6} \mathrm{~F}_{4}\right)$ and $-17.3 \mathrm{ppm}\left(C-\mathrm{SiMe}_{3}\right)$ for $\mathbf{5}$; and -4.7 ppm $\left(C-\mathrm{C}_{6} \mathrm{~F}_{4}\right)$ and $-15.5 \mathrm{ppm}\left(C-\mathrm{SiMe}_{3}\right)$ for 6 . Although an upfield shift of the skeletal C atoms is typical for tetrahedrane, ${ }^{2,3}$ significant downfield shifts relative to $\mathbf{2}(-20.5 \mathrm{ppm})$ and $\mathbf{3}[-27.0 \mathrm{ppm}$ (ring $C-\mathrm{Li}$) and -22.0 ppm (ring C)] were observed for the arylsubstituted carbon atom: +14.0 ppm for $\mathbf{4},+14.5 \mathrm{ppm}$ for 5 , and +15.8 ppm for $\mathbf{6}$ relative to $2 .{ }^{3}$ These remarkable downfield NMR chemical shifts could be attributed to the considerable electronic effect of the perfluoroaryl group on the tetrahedrane skeleton.

The molecular structure of $\mathbf{4}$, as determined by X-ray crystallographic analysis, is shown in Figure 1. ${ }^{9}$ The C 1 (tetrahedrane skeleton) - C14(ipso-C of $\mathrm{C}_{6} \mathrm{~F}_{5}$) bond length is $1.450(2) \AA$, which is significantly shorter than the typical $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ single-bond length $(1.507 \AA) .{ }^{11}$ The bond shortening of the $\mathrm{C} 1-\mathrm{C} 14$ bond indicates the $\sigma-\pi$ conjugation between the highly strained tetrahedrane framework and the benzene ring (seen in HOMO-3). The
calculated s character of the C1-C14 bond at the NBO/B3LYP/ $6-31 \mathrm{G}(\mathrm{d})$ level is $\mathrm{sp}^{1.57}$. As a consequence of the difference in the electronegativity of the substituents $\left(\mathrm{Me}_{3} \mathrm{Si}\right.$ vs $\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)$, the core structure in $\mathbf{4}$ does not show ideal T_{d} symmetry. Thus, the $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)-\mathrm{C}\left(\mathrm{SiMe}_{3}\right)$ bond lengths $(\mathrm{C} 1-\mathrm{C} 2, \mathrm{C} 1-\mathrm{C} 3$, and $\mathrm{C} 1-\mathrm{C} 4)$ in 4 range from $1.475(2)$ to $1.504(2) \AA$ [av 1.485(2) \AA], whereas the $\mathrm{C}\left(\mathrm{SiMe}_{3}\right)-\mathrm{C}\left(\mathrm{SiMe}_{3}\right)$ bond lengths $(\mathrm{C} 2-\mathrm{C} 3, \mathrm{C} 2-\mathrm{C} 4$, and $\mathrm{C} 3-\mathrm{C} 4)$ range from $1.504(2)$ to $1.524(2) \AA$ [av 1.512(2) \AA]. Obviously, the presence of an electron-withdrawing group leads to a shortening of the tetrahedrane bond lengths [av 1.485(2) vs av $1.512(2) \AA]$. It should be noted that the distorted core of $\mathbf{3}$ shows the opposite behavior: that is, the $\mathrm{C}(\mathrm{Li})-\mathrm{C}\left(\mathrm{SiMe}_{3}\right)$ bond lengths are longer [av $1.543(2) \AA$] than the others [av 1.499(2) \AA]. ${ }^{6}$

Figure 1. ORTEP drawing of $\mathbf{4}$ (30% probability level). Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA): C1-C14, 1.450(2); $\mathrm{C} 1-\mathrm{C} 2,1.475(2) ; \mathrm{C} 1-\mathrm{C} 3,1.504(2) ; \mathrm{C} 1-\mathrm{C} 4,1.475(2) ; \mathrm{C} 2-\mathrm{C} 3,1.507(2)$; C2-C4, 1.524(2); C3-C4, 1.504(2); Si1-C2, 1.8363(17); Si2-C3, 1.8327(18); Si3-C4, 1.8377(18). Selected bond angles (deg): C2-C1-C3, 60.80(11); C2-C1-C4, 62.21(12); C3-C1-C4, 60.65(11); C3-C2-C4, 59.51(11); C2-C3-C4, 60.79(11); C2-C4-C3, 59.70(11).

We also carried out the X-ray analysis of $\mathbf{6}$ and found that its tetrahedrane core structure is quite similar to that of $\mathbf{4}$ (Figure 2). ${ }^{9}$ The C (tetrahedrane skeleton) -C 14 (ipso- C of $\mathrm{C}_{6} \mathrm{~F}_{4}$) bond length is $1.438(2) \AA$ in 6 .

Figure 2. ORTEP drawing of 6 (30\% probability level). Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA): C1-C14, 1.438(2); C1-C2, 1.497(2); C1-C3, 1.501(2); C1-C4, 1.463(2); C2-C3, 1.491(2); C2-C4, 1.527(2); C3-C4, 1.523(2); Si1-C2, 1.8328(17); Si2-C3, 1.8277(16); Si3-C4, 1.8337(16); C20-C21, 1.195(2). Selected bond angles (deg): $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3,59.65(10) ; \mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4,62.11(11) ; \mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 4,61.82(10)$; $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4,60.60(10)$; $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4,60.86(11)$; $\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 3,58.53(10)$.

The HOMO-3 (bonding interaction) and HOMO (antibonding interaction) of $\mathbf{4}$ calculated at the B3LYP/6-31G(d) level are shown in Figure 3. The tetrahedrane has two higher-energy σ orbitals, which are degenerate because of the highly symmetric structure. ${ }^{12}$ The two σ orbitals can conjugate with the π orbital $\left(\Psi_{s}\right)$ of the benzene ring to form two conformational isomers (one coplanar with and one perpendicular to the benzene ring); $\sigma-\pi$ conjugation over the tetrahedrane unit and benzene ring can be achieved in both cases (see the Supporting Information), but the energy difference of the two conformers is very small. ${ }^{13}$

The extended $\sigma-\pi$ conjugation in $\mathbf{4 - 6}$ is reflected in the electronic spectra (Figure 4). The absorption maxima of the UV-vis absorption spectra of $\mathbf{4}, \mathbf{5}$, and $\mathbf{6}$ in hexane were observed at 271

Figure 3. (left) HOMO-3 and (right) HOMO of 4 calculated at the B3LYP/6-31G(d) level.
$\mathrm{nm}\left(\varepsilon=6200 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right)$ for $4,303 \mathrm{~nm}\left(\varepsilon=9600 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right)$ for 5, and $324 \mathrm{~nm}\left(\varepsilon=30500 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right)$ for $\mathbf{6}$. The considerable bathochromic shift of $\mathbf{4 - 6}$ relative to hexafluorobenzene ($\lambda_{\max }=$ $231 \mathrm{~nm})^{14}$ could serve as evidence for $\sigma-\pi$ conjugation between the tetrahedrane σ framework and the perfluoroaryl π system.

Figure 4. UV-vis spectra of $4-6$ in hexane.
Supporting Information Available: Experimental procedures and spectral data for $\mathbf{4}, \mathbf{5}$, and $\mathbf{6}$, computational results and MO diagram for $\mathbf{4}$, and tables of crystallographic data, including atomic positions and thermal parameters, and CIF files for $\mathbf{4}$ and $\mathbf{6}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) For reviews on tetrahedrane, see: (a) Maier, G. Angew. Chem., Int. Ed. Engl. 1988, 27, 309. (b) Maier, G. Pure Appl. Chem. 1991, 63, 275. (c) Lee, V. Ya.; Sekiguchi, A. In Strained Hydrocarbons; Dodziuk, H., Ed.; Wiley-VCH: Weinheim, Germany, 2009; Chapter 2.
(2) (a) Maier, G.; Pfriem, S.; Schäfer, U.; Matusch, R. Angew. Chem., Int. Ed. Engl. 1978, 17, 520. (b) Maier, G.; Pfriem, S.; Schäfer, U.; Malsch, K.-D.; Matusch, R. Chem. Ber. 1981, 114, 3965.
(3) Maier, G.; Nuedert, J.; Wolf, O.; Pappusch, D.; Sekiguchi, A.; Tanaka, M.; Matsuo, T. J. Am. Chem. Soc. 2002, 124, 13819.
(4) (a) Maier, G.; Neudert, J.; Wolf, O. Angew. Chem., Int. Ed. 2001, $40,1674$. (b) Sekiguchi, A.; Tanaka, M.; Matsuo, T.; Watanabe, H. Angew. Chem., Int. Ed. 2001, 40, 1675.
(5) For recent reviews of silyl-substituted cyclobutadienes, see: (a) Matsuo, T.; Sekiguchi, A. Bull. Chem. Soc. Jpn. 2004, 77, 211. (b) Sekiguchi, A.; Matsuo, T. Synlett 2006, 2683.
(6) Sekiguchi, A.; Tanaka, M. J. Am. Chem. Soc. 2003, 125, 12684.
(7) Tanaka, M.; Sekiguchi, A. Angew. Chem., Int. Ed. 2005, 44, 5821.
(8) (a) Mo, Y. Org. Lett. 2006, 8, 535. (b) Nemirowski, A.; Reisenauer, H. P.; Schreiner, P. R. Chem.-Eur. J. 2006, 12, 7411.
(9) For experimental procedures and spectral data for 4-6 and crystal data for 4 and 6 , see the Supporting Information.
(10) Brooke, G. M. J. Organomet. Chem. 1977, 86, 1.
(11) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1.
(12) Heilbronner, E.; Jones, T. B.; Krebs, A.; Maier, G.; Malsch, K.-D.; Pocklington, J.; Schmelzer, A. J. Am. Chem. Soc. 1980, 102, 564.
(13) One of the edges (the $\mathrm{C} 1-\mathrm{C} 3$ bond) of the tetrahedrane skeleton in $\mathbf{4}$ is perpendicular to the benzene ring: the dihedral angles $\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 1-\mathrm{C} 3$ and $\mathrm{C} 19-\mathrm{C} 14-\mathrm{C} 1-\mathrm{C} 3$ are $89.4(3)$ and $-91.6(3)^{\circ}$, respectively. On the other hand, one of the edges of the tetrahedrane skeleton in $\mathbf{6}$ was found to be almost coplanar to the benzene ring: the dihedral angles $\mathrm{C} 15-\mathrm{C} 14-$ $\mathrm{C} 1-\mathrm{C} 4$ and $\mathrm{C} 19-\mathrm{C} 14-\mathrm{C} 1-\mathrm{C} 4$ are 173.5(4) and $-6.8(2)^{\circ}$, respectively. DFT calculations of the barrier for rotation about the $\mathrm{C} 1-\mathrm{C} 14$ single bond in 4 at the B3LYP/6-31G(d) level indicated that the energy difference of the two conformers is very small $(0.75 \mathrm{kcal} / \mathrm{mol})$. The slightly less favorable perpendicular structure in 4 found from the X-ray analysis (see Figure 1) may be due to crystal-packing forces.
(14) Saik, V. O.; Lipsky, S. J. Phys. Chem. A 2001, 105, 10107.

JA810055W

